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Abstract— The design of computationally efficient and incen-
tive compatible mechanisms that solve or approximate fundamental
resource allocation problems is the main goal of algorithmic
mechanism design. A central example in both theory and practice
is welfare-maximization in combinatorial auctions. Recently, a
randomized mechanism has been discovered for combinatorial
auctions that is truthful in expectation and guarantees a (1 —1/e)-
approximation to the optimal social welfare when players have
coverage valuations [11]. This approximation ratio is the best
possible even for non-truthful algorithms, assuming P # N P [16].

Given the recent sequence of negative results for combinatorial
auctions under more restrictive notions of incentive compatibility
[7], [2], [9], this development raises a natural question: Are
truthful-in-expectation mechanisms compatible with polynomial-
time approximation in a way that deterministic or universally truth-
ful mechanisms are not? In particular, can polynomial-time truthful-
in-expectation mechanisms guarantee a near-optimal approximation
ratio for more general variants of combinatorial auctions?

We prove that this is not the case. Specifically, the result of [11]
cannot be extended to combinatorial auctions with submodular val-
uations in the value oracle model. (Absent strategic considerations,
a (1 — 1/e)-approximation is still achievable in this setting [25].)
More precisely, we prove that there is a constant v > O such that
there is no randomized mechanism that is truthful-in-expectation—
or even approximately truthful-in-expectation — and guarantees an
m~ 7 -approximation to the optimal social welfare for combinatorial
auctions with submodular valuations in the value oracle model.

We also prove an analogous result for the flexible combinatorial
public projects (CPP) problem, where a truthful-in-expectation
(1—1/e)-approximation for coverage valuations has been recently
developed [13]. We show that there is no truthful-in-expectation —
or even approximately truthful-in-expectation — mechanism that
achieves an m ™ 7-approximation to the optimal social welfare for
combinatorial public projects with submodular valuations in the
value oracle model. Both our results present an unexpected separa-
tion between coverage functions and submodular functions, which
does not occur for these problems without strategic considerations.

1. INTRODUCTION

The design of incentive-compatible mechanisms for wel-
fare maximization in combinatorial auctions is a central
problem of algorithmic mechanism design. In a combina-
torial auction, there are n players and a set M of m items.
Player 4 has a (private) valuation function v; : 2M — R,
which is assumed to be monotone (v;(S) < v;(T") whenever
S C T) and normalized (v;(#) = 0). The goal is to
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design a computationally efficient mechanism that yields
an allocation of items (Si,...,S,) to the players along
with payments (pi1,...,p,) so that (a) the social welfare
> vi(S;) is approximately maximized, and (b) the mech-
anism is incentive-compatible, or truthful, meaning that each
player maximizes his utility v;(S;) — p; by reporting his true
valuation v;.

This problem has been studied extensively in both strate-
gic and non-strategic settings. Various strategic solution con-
cepts have been considered, including deterministic truthful-
ness, universal truthfulness, and truthfulness in expectation.
Moreover, both strategic and non-strategic formulations of
the problem have been studied for various restricted classes
of valuations, as well as under various assumptions on how
valuations are accessed or represented. Absent assumptions
on the class of valuations, the welfare maximization problem
is very hard to approximate even by non-truthful algo-
rithms (NP-hardness of m¢~1/2-approximation follows from
the set packing problem). Better approximation ratios are
possible for valuation classes that restrict complementarity
between items. A prominent class of such valuations are
submodular functions: functions v; where the marginal value
v;(SU{j})—v;(S) for a each fixed item j is non-increasing
in S. It is known that the welfare maximization problem
with submodular valuation functions admits a (non-truthful)
(1 — 1/e)-approximation algorithm [25], and this is optimal
assuming P # NP [16]. The hardness result of [16] holds
even in the special case of coverage valuations; the algorith-
mic result of [25] holds in the value oracle model, where
each v; can be queried only through an oracle returning
v;(S) for a given query .S. This is also the model we consider
in this paper. It is known that a (1 — 1/e+ ¢)-approximation
for combinatorial auctions with submodular bidders would
require exponentially many value queries [20].

The classical VCG mechanism is incentive compatible
and maximizes welfare in combinatorial auctions. Unfortu-
nately, however, VCG can not be implemented in polynomial
time even for very special classes of valuation functions,
including submodular functions. Combining computational
efficiency and truthfulness for combinatorial auctions ap-
pears difficult. A series of works have provided evidence
that computational efficiency and truthfulness are in conflict:
(deterministic) VCG-type mechanisms have been ruled out
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Currently known results for combinatorial auctions: approximation | inapproximability. If only one result is given, it is known

to be optimal. For randomized maximal-in-range (universally truthful) mechanisms, it is known that it is hard to achieve a better than
1/n-approximation for coverage valuations; however, other universally truthful mechanisms might exist. No non-trivial hardness was
previously known for truthful-in-expectation combinatorial auctions, even when restricted to maximal-in-distributional-range mechanisms.

for submodular combinatorial auctions in the communication
complexity model [7], and even for explicitly given budget-
additive valuations [2]. Recently, Dobzinski [9] proved that
there is no deterministic truthful or even randomized uni-
versally truthful mechanism for submodular combinatorial
auctions in the value oracle model, achieving an approxi-
mation ratio better than m<=1/2,

Therefore, it came as a surprise when a (1 — 1/e)-
approximate randomized mechanism was discovered by
Dughmi, Roughgarden and Yan [11] for a large subclass
of submodular valuations. Their mechanism is fruthful in
expectation — a weaker notion than truthfulness in the
universal sense — and applies to explicitly represented
coverage functions. More generally, their mechanism applies
to “black-box” valuations expressible as weighted sums of
matroid rank functions, provided they support “lottery-value
queries” (what is the expectation E[v;(X)] for a given prod-
uct distribution X). The mechanism can be also implemented
in the value oracle model, at the cost of relaxing the solution
concept to approximate truthfulness in expectation [12].

This development raises a natural question: Could
truthfulness-in-expectation be the cure for combinato-
rial auctions, perhaps providing an optimal (1 — 1/e)-
approximation for all submodular valuations? Given that
a (1 — 1/e)-approximation for welfare maximization in
combinatorial auctions (without truthfulness) was also dis-
covered first for coverage functions [8], then for weighted
sums of matroid rank functions [4] and later extended to
monotone submodular functions [25], it seems reasonable
to conjecture that the same might happen for truthful-in-
expectation mechanisms.

Our results: We prove that this is not the case, and
there is a significant separation between the class of cover-
age functions and general monotone submodular functions.
More precisely, there is no truthful-in-expectation mecha-
nism (even (1 — €)-approximately truthful-in-expectation)
for submodular combinatorial auctions in the value oracle
model, guaranteeing an approximation better than 1/m? for
some fixed €,y > 0 (Theorem 5.1). In particular, the results
of [11] cannot be extended to all monotone submodular
functions. We also prove a similar result for the flexible
submodular combinatorial public projects problem (see Sec-
tion 4 for a history of this problem): there is no (1 — €)-

approximately truthful-in-expectation mechanism providing
approximation better than 1/m” for some v > 0. This is
true even in the case of a single player. The combinatorial
public projects problem admits a simpler structure than
combinatorial auctions, and hence we deal with it first to
demonstrate our approach.

Our techniques: Our hardness results are obtained by
combining two recently developed techniques: the symmetry
gap technique for submodular functions [26], and the direct
hardness approach for combinatorial auctions [9].

First, we consider the possibility of maximal-in-
distributional range (MIDR) mechanisms. We endeavor to
explain why the approach of [11] breaks down when applied
to monotone submodular functions. The answer lies in a
certain convexity phenomenon that can be exploited in a
symmetry gap argument. The symmetry gap argument on
its own rules out the approach of [11]. Furthermore, it is
possible to generalize the argument to an arbitrary MIDR
mechanism, and moreover amplify the gap to some constant
power of m. In fact our approach rules out even non-uniform
approximately-MIDR mechanisms.

In the case of combinatorial public projects (CPP), we
prove that if non-uniformity is allowed, then approximately
truthful-in-expectation mechanisms are no more powerful
than MIDR mechanisms. Therefore, by ruling out MIDR
mechanisms, we also rule out truthful-in-expectation mech-
anisms. In the case of combinatorial auctions, no such equiv-
alence in power between truthful-in-expectation and MIDR
mechanisms is known. Instead, we apply the direct hardness
approach of Dobzinski [9] to identify a single player for
whom the allocation problem in some sense mimics the
CPP problem. Again, the symmetry gap argument can be
used here, though payments complicate the picture. We
address this difficulty by employing a scaling argument and
invoking the separating hyperplane theorem — this allows
us to essentially get rid of the payments and use the same
gap amplification technique we used for the CPP problem.

Organization: After the preliminaries (Section 2), we
present our intuition on the separation between coverage
and submodular functions in Section 3. Then we present
an overview of our proofs for combinatorial public projects
(Section 4) and for combinatorial auctions (Section 5). The
complete proofs are deferred to the full version.



2. PRELIMINARIES
2.1. Mechanism Design Basics

Mechanism Design Problems: We consider mechanism
design problems where there are n players, and a set € of
feasible solutions. Each player ¢ has a non-negative valuation
function v; : Q@ — R,. We are concerned with welfare
maximization problems, where the objective is > ; v;(w).

Mechanisms: We consider direct-revelation mecha-
nisms for mechanism design problems. Such a mechanism
comprises an allocation rule A, which is a function from
(hopefully truthfully) reported valuation functions v =
(v1,...,v,) to an outcome A(v) € €2, and a payment rule
p, which is a function from reported valuation functions to
a required payment p;(v) from each player i. We allow
the allocation and payment rules to be randomized. We
restrict our attention to mechanisms that are individually
rational in expectation — i.e. E[v;(A(v)) — pi(v)] > 0
— and the payments are non-negative in expectation —
ie. E[p;(v)] > 0 — for each player ¢ and each input
v = (v1,...,vy), when the expectations are over the random
coins of the mechanism.

Truthfulness: A mechanism with allocation and pay-
ment rules A and p is truthful-in-expectation if every player
always maximizes its expected payoff by truthfully reporting
its valuation function, meaning that

E[vi(A(v)) = pi(v)] = E[vi(A(v}, v-:)) — pi(v, v-3)] (D)

for every player ¢, (true) valuation function v;, (reported)
valuation function v}, and (reported) valuation functions v_;
of the other players. The expectation in (1) is over the
coin flips of the mechanism. If (1) holds for every flip of
the coins, rather than merely in expectation, we call the
mechanism universally truthful.

VCG-Based Mechanisms: Mechanisms for welfare
maximization problems are often variants of the classical
VCG mechanism. Recall that the VCG mechanism is defined
by the (generally intractable) allocation rule that selects the
welfare-maximizing outcome with respect to the reported
valuation functions, and the payment rule that charges each
player ¢ a bid-independent “pivot term” minus the reported
welfare earned by other players in the selected outcome.
This (deterministic) mechanism is truthful; see e.g. [22].

Let dist(€)) denote the probability distributions over the
set of feasible solutions €, and let R C dist(Q2) be
a compact subset of them. The corresponding Maximal
in Distributional Range (MIDR) allocation rule is defined
as follows: given reported valuation functions vy, ..., vy,
return an outcome that is sampled randomly from a dis-
tribution D* € 'R that maximizes the expected welfare
E.~p[>_; vi(w)] over all distributions D € R. Analogous
to the VCG mechanism, there is a (randomized) payment
rule that can be coupled with this allocation rule to yield
a truthful-in-expectation mechanism (see [6]). We note that

deterministic MIDR allocation rules — i.e. those where R
is a set of point distributions — are called maximal-in-range
(MIR).

Approximate Truthfulness: For € > 0, a mechanism
with allocation and payment rules A and p is (1 — ¢)-
approximately truthful-in-expectation if

E[v; (A(v) —ps(v)] > (1 Elvy (A}, v_;)) —pi (v, v_)]
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for every player i, (true) valuation function v;, (reported)
valuation function v}, and (reported) valuation functions v_;
of the other players. The expectation in (2) is over the coin
flips of the mechanism. Using the fact that payments are non-
negative in expectation, a (1 — €)-approximately truthful-in-
expectation mechanism also satisfies the following weaker
condition. (This condition is sufficient for our hardness
results.)

Elvi(A(v)) =i (v)] = E[(L—€)ui (A}, v_4)) = ps(v)sv_)]
3)
Approximately truthful mechanisms are related to approxi-
mately maximal-in-distributional-range allocation rules. An
allocation rule 4 : V — Q is (1 — e)-approximately
maximal-in-distributional range if it fixes a R C dist(Q),
and returns an outcome that is sampled from D* € R
that (1 — €)-approximately maximizes the expected welfare
E.~p[>, vi(w)] over all distributions D € R. We show
in Appendix A a sense in which approximately maximal-
in-distributional-range allocation rules are no less powerful
— in terms of approximating the social welfare — than
approximately truthful-in-expectation mechanisms.

Our main reason for considering the notion of approxi-
mate truthfulness is that the mechanisms of [11], [13], if
implemented in the value oracle model, are only approxi-
mately truthful-in-expectation (for an arbitrarily small € > 0,
see [12]). The value oracle model seems too weak to make
the mechanisms of [11], [13] exactly truthful-in-expectation;
however, [12] makes it quite conceivable that there might
be an approximately truthful-in-expectation mechanism for
combinatorial auctions with submodular valuations.

2.2. Combinatorial Auctions

In Combinatorial Auctions there is a set M of m items,
and a set of n players. Each player ¢ has a valuation function
v; : 2 — R, that is normalized (v;(()) = 0) and monotone
(v;(A) < v;(B) whenever A C B). A feasible solution
is an allocation (Si,...,Sy), where S; denotes the items
assigned to player 4, and {.S;}, are mutually disjoint subsets
of M. Player 4’s value for outcome (Si,...,S,) is equal
to v;(S;). The goal is to choose an allocation maximizing
social welfare: . v;(S;).

2.3. Combinatorial Public Projects

In Combinatorial Public Projects there is a set [m] =
{1,...,m} of projects, a cardinality bound k such that



0 <k <m,and a set [n] = {1,...,n} of players. Each
player i has a valuation function v; : 2™ — R, that
is normalized (v;(#) = 0) and monotone (v;(A) < v;(B)
whenever A C B). In this paper, we focus on the flexible
variant of combinatorial public projects: a feasible solution
is a set S C [m] of projects with |S| < k. Player ¢’s value
for outcome S is equal to v;(.S). Prior work [24], [3], [9] has
also considered the exact variant, where a feasible solution
is a set S C [m] with |S| = k. In both variants, the goal
is to choose a feasible set S maximizing social welfare:

Zi Ui(S)~

3. INTUITION
- WHAT FAILS FOR SUBMODULAR FUNCTIONS?

The main obstacle in proving our hardness result for
submodular functions is the fact that the natural subclass
of coverage functions does admit a truthful-in-expectation
(1 — 1/e)-approximation [11]. In the absence of strategic
considerations, coverage functions capture the full difficulty
of submodular functions in the context of welfare maxi-
mization, in the sense that they exhibit the same hardness
threshold of 1—1/e. Hence, it is not immediately clear where
the dramatic jump in hardness should come from.

Let us recall the main idea of [11]: Let f : 2M — R, be
a submodular set function. Given x € [0, 1]™, the expected
value of f(.S) when S includes each item j independently
with probability z; is measured by the multilinear extension
F(x), which has been previously used in work on submodu-
lar maximization [4], [25], [17], [26], [23]. F' is an extension
of f, in the sense that it agrees with f on integer points,
and therefore maximizing F'(x) over fractional allocations
would yield an optimal algorithm. However, F'(x) is not a
concave function and can be maximized only approximately.
Instead, the authors of [11] consider a different rounding
process — which they call the Poisson rounding scheme
— that includes each j in S with probability 1 — e™% in-
stead. The expected value of applying the Poisson rounding
rounding scheme to a point x is measured by a modified
function F¢*P(zq,...,2yp) = F(1 —e™®1,...,1 — e %m),
which fortuitously furns out to be concave for a subclass
of submodular functions, including coverage functions and
weighted sums of matroid rank functions. In this case,
F**P(x) can be maximized exactly, and yields a maximal-
in-distributional-range algorithm whose range is the image
of the Poisson rounding scheme. Since the ratio between
F(x) and F**P(x) is bounded by 1 — 1/e, this leads to a
truthful-in-expectation (1 — 1/e)-approximation.

The first question is whether F'°*P can be maximized for
any monotone submodular function. It was observed by the
authors of [11] that F'*"P is not concave for every submod-
ular function: one example is the budget-additive function
f(S) = min{} , gw;,2} where w; = wy = w3 = 1
and w4 = 2. Hence convex optimization techniques cannot
be used for F¢*P(x) directly; still, perhaps F¢*P(x) could

be maximized for a different reason. We prove that this is
impossible, using a symmetry gap argument [15], [20], [26].

The budget-additive function above does not lend itself
well to the symmetry gap argument, because there is a
clear asymmetry between the elements of weight 1 and the
element of weight 2. Instead, we construct an example where
F°*P is not concave and all elements are in some sense
“equivalent”. For this purpose, we use the following con-
struction: If f1, fo : 2 — [0,1] are monotone submodular
functions, then

f(8)=1-(Q1 = f1(9)(1 = f2(9))

is also a monotone submodular function (we omit the proof).
In particular, let M = My U Ma, |M;| = |Mz| =m, |M| =
2m, and let f;(S) = min{--|S N M;], 1} for some o > 0.
These are budget-additive and hence monotone submodular
functions. Therefore the following function is also monotone

submodular:

f(8) =1= (1= f1(5)A = f2(9))

1 1
—1- (1_ |SmM1|> <1—SﬂM2> .
am n am N

Here, (y)+ = max{y,0} denotes the positive part of a
number. Let’s consider the function F*P(xq,...,Tay) =
F(1—-e™,...;,1—e ") If m — oo, a random set
obtained by sampling with probabilities 1 — e~ will have
cardinality very close to Y (1 — e~*i). We obtain

Fo(x) ~ 1 <1 — - ﬁi))
N

i€ My

1
1— — 1—e %
O{TTLZ( € )

JEM2 +

The reader can verify that this function is concave for o = 1.
But this is a very special coincidence. (The reason is that
f for « = 1 can be represented as a coverage function.)
Any smaller value of «, for instance o = 1/2, gives a non-
concave function F'°*P, as can be seen by checking x =
1M1, X = 1]\/[2 and x = %1]\/[ Fe"Lp(]_Ml) = F;zp(ljwz) =
1—(=1+2e1); =1 (note that —1 + 2e~! < 0), while
the value at the midpoint is F'¢*P (%1M) ~1—-(-1+
2e~1/2)2 = 4e=1/2 — 4e~! ~ 0.955. Therefore, we have an
example where F°*P(x) is not concave and moreover, all
elements play the same symmetric role in f. (Formally, f
has an element-transitive group of symmetries.) Functions
of this type will play a crucial role in our proof.

The symmetry gap argument: The symmetry gap argu-
ment from [26], building up on previous work [15], [20],
shows the following: Instances exhibiting some kind of
symmetry can be blown up and modified in such a way
that the only solutions that an algorithm can find (using a
polynomial number of value queries) are symmetric with



respect to the same notion of symmetry. Thus the gap
between symmetric and asymmetric solutions implies an
inapproximability threshold. We use this argument here as
follows. The instance above (for « = 1/2) can be slightly
modified as in [15], [20], [26], in such a way that it is
impossible to find any solution that is asymmetric with
respect to My, Ms. Consider the optimization problem

max{F“P(x) : le < m}.

The best symmetric solution is F**P($1,,) ~ 0.955, while
the optimum is F°*?(1,;,) = 1. The only solutions found
by a polynomial number of value queries are the symmetric
ones, and hence we cannot solve the optimization problem
within a factor better than 0.955. A similar argument shows
that we cannot solve the welfare maximization problem (for
2 players) with respect to F°*P(x) within a factor better
than 0.955.

In the following, we harness this construction to-
wards showing that there can be no good maximum-in-
distributional-range mechanism, and eventually, no good
truthful-in-expectation mechanism.

4. HARDNESS FOR COMBINATORIAL PUBLIC PROJECTS

We start with the combinatorial public project problem.
The (exact) combinatorial public project problem was intro-
duced in [24] as a model problem for the study of truthful
approximation mechanisms. This problem is better under-
stood than combinatorial auctions, in the sense that a useful
characterization of all deterministic truthful mechanisms is
known: every truthful mechanism for 2 players is an affine
maximizer — a weighted generalization of maximal-in-range
mechanisms [24]. Using this characterization, it was proved
in [24] that the exact submodular CPP problem does not
admit any (deterministic) truthful m¢~/2-approximation us-
ing a subexponential amount of communication, and more-
over there is no m¢~1/2-approximation even for a certain
class of succintly represented submodular valuations unless
NP C BPP. In contrast, the simple greedy algorithm is
a non-truthful (1 — 1/e)-approximation algorithm for this
problem [21]. This was the first example of such a dramatic
gap in approximability between truthful mechanisms and
non-truthful algorithms.

In follow-up work, a simpler characterization-type state-
ment for CPP was shown in [3]: Every truthful mechanism
for a single player with a coverage valuation can, via a
non-uniform polynomial time reduction, be converted to a
truthful maximal-in-range mechanism without degrading its
approximation ratio. Since every truthful mechanism for n
players must embed a truthful mechanism for a single player,
this allowed the authors to restrict attention to maximal-in-
range mechanisms for a single player in proving an m¢~1/2-
approximation threshold for CPP with coverage valuations,
assuming that NP ¢ P/poly. The following easy converse
of their characterization is notable: A maximal-in-range

mechanism for CPP with a single player can directly be
used as a maximal-in-range mechanism for any number of
players.

Recently, it was proved by Dobzinski [9] that the exact
variant of the submodular CPP problem (under the constraint
|S| = k) does not admit a truthful-in-expectation m<~1/2-
approximation in the value oracle model. However, as noted
in [9], the flexible variant of CPP (under the constraint
|S| < k) is arguably more natural in the strategic setting.
For the flexible variant of CPP, [9] proves that there is
no universally truthful m¢=!/2-approximation, but leaves
open the possibility of a better truthful-in-expectation mech-
anism. Problems that have a packing structure like flexible
CPP have historically proven to be easier to approximate
using truthful-in-expectation mechanisms [19], [6], [10],
[11]. Flexible CPP has exhibited a similar pattern; Dughmi
[13] recently designed a truthful-in-expectation (1 — 1/e)-
approximation mechanism for CPP when players have ex-
plicit coverage valuations (which is optimal regardless of
strategic issues [14]), and more generally when players
have matroid rank sum valuations that support a certain
randomized variant of value queries.

Transformation to MIDR mechanisms: While deter-
ministic truthful mechanisms for the CPP problem are no
more powerful in terms of approximation than maximal-in-
range mechanisms [24], [3], the situation is slightly more
complicated for randomized mechanisms. It is not clear
whether truthful-in-expectation mechanisms are equivalent
to maximal-in-distributional-range mechanisms. Nonethe-
less, we prove the following.

Theorem 4.1. For every ¢ > 0 and c¢(m) > 0 the
Sollowing holds. If there is a (1 — €)-approximately truthful-
in-expectation mechanism M for the (exact or flexible) CPP
problem that achieves a c(m)-approximation for submodular
valuations on m elements, then for any § > 0 there
is a non-uniform (1 — 3¢ — §)-approximately maximal-in-
distributional-range mechanism M’ that achieves a c(m)-
approximation for submodular valuations on m elements
and uses at most m more value queries than M.

By a non-uniform mechanism, we mean a separate fixed
mechanism for each input size m; i.e., the size of the
program can depend arbitrarily on m. The only bound on the
non-uniform mechanism is the number of value queries used.
The main idea is that the although the range of prices offered
by a truthful-in-expectation mechanism can be unbounded,
the mechanism can be made MIDR “in the limit”, when
the input valuation is scaled by a sufficiently large constant.
This constant can be fixed for each input size m and acts as
an “advice string” to the mechanism. We present the proof
in the Appendix.

Hardness for MIDR mechanisms: Our hardness result
for flexible submodular CPP rules out mechanisms purely
based on the number of value queries used, and hence it



rules out even the non-uniform mechanisms mentioned in
Theorem 4.1.

Theorem 4.2. There are absolute constants e,y > 0
such that there is no (1 — €)-approximately maximal-in-
distributional-range mechanism for the flexible submodular
CPP problem with 1 player in the value oracle model,
max{f(S) : |S| < k}, achieving a better than 1/m”-
approximation in expectation in the objective function, where
m is the size of the ground set. This holds even for non-
uniform mechanisms of arbitrary computational complexity,
as long as the number of value queries is bounded by

poly(m).

In the following, we present a sketch of the proof of this

theorem. The full proof is deferred to the journal version.

Proof strategy: We assume that a mechanism optimizes
over a range of distributions R. (We assume for simplicity
that the mechanism is MIDR rather than approximately
MIDR.) We emphasize that the range R is fixed beforehand,
and the mechanism must optimize over R for any particular
submodular function f. This gives us a lot of flexibility in
arguing about the properties of k.

Suppose that the size of the ground set is m = 20
and the cardinality bound is & = m/2¢. We consider ¢ +
1 different “levels” of valuation functions. (See Figure 2.)
At level 0, we have a set A©) of m/ 2¢ items, where the
valuation function is nonzero and additive. Assuming that
the mechanism achieves a c-approximation, there must be a
distribution Dy € R which allocates at least a c-fraction of
A in expectation to player i. This must be true for every
set A(®) of size m/2¢. It will be useful to think of this set
as random (and hidden from the mechanism.)

Figure 2. A bisection sequence (A), B(4)), with the distributions D;
returned by the mechanism at level j. The density of D; increases in a
certain technical sense exponentially in j, although much slower than 27.

At level j, 1 < j </, we have a (random) set AW of
m/2°~7 items, which is partitioned randomly into two sets
AU=1 U BU-D of equal size; these are level-(j — 1) sets.
The valuation function at level j will be as in Section 3 but
restricted to the set AY) = AU=1) U BU-D (the two parts

play the role of My, M5 from Section 3). The mechanism
can detect the set AU); however, the partition of A) into
AU=1 U BU-D remains hidden. By the symmetry gap
argument, the mechanism cannot learn what the partition
is, and hence any distribution D; returned by the algo-
rithm will be with high probability balanced with respect
to (AU=1 BU-1) The MIDR property implies that this
distribution must be “dense” enough in order to beat the
distribution D;_; guaranteed by the previous level, which
is sensitive to the partition (AU~ BU=D) (By density,
we mean a certain notion of average size for sets sampled
from D;.) Since distributions concentrated inside AU~
or BU—Y are more profitable than distributions balanced
between (AU~1, BU-1) we will ideally obtain a constant-
factor boost in density at each level. As ¢ grows, this will
eventually contradict the fact that the mechanism cannot
choose more than k items.

Finding the right definition of density that yields a
constant-factor boost at each level is the main technical
difficulty. The most natural definition of density seems to
be the expected size of the set returned by the mechanism.
However, this notion does not yield the desired boost. (This
is related to the fact that we cannot get any contradiction for
coverage functions.) The notion of density that turns out to
be useful is more complicated; it is derived from functions
that exhibit non-concave behavior of the extension F°*P.
This strategy will be made more explicit in the following.

The symmetry gap: Atlevel j+1, we consider valuation
functions of the form

SN AW
faw g (8) =1~ (1 —¢ <||2(])||>>

|S N BW|
'(1‘¢( B0 ))

where ¢ : [0, 1] — [0, 1] is a suitable non-decreasing concave
function. Note that under this valuation function, the value
of a (random) set R depends only on how many elements it

takes from AU) and BU). In particular, if we denote X; =
|[RNAW | Y. — |RNBY
‘A(j)‘ > 1] T ‘B(j)‘

E[fA(j),B(j)(R)] = E[l - (1 - ¢(Xj))(1 - ¢(YJ))]

Since this expected value depends only on X;,Y;, we say
that X;,Y; represent the distribution of R.

By the symmetry gap argument [15], [26] (if the valuation
function is suitably perturbed and the partition (AU), BU))
is random), the mechanism with high probability returns a
solution RUTY) independent of the partition and hence sym-

. . . . - \R('H'l)r‘]A(-H'l)\
metric with respect to it. Denoting X;; = G
we obtain that the mechanism returns expected value

E(fs0) po (RUTD)] =E[L — (1 — ¢(X;41))]

which is typically less than E[1 — (1 — ¢(X;))(1 — ¢(Y}))]
if X;41 = 3(X; +Y;) and X; # Y. (There are certain

)
I, then we have




error terms arising from the symmetry gap argument but
let us ignore them here.) The main point here is that if the
mechanism is MIDR, then the expected value of the returned
random set E[f,u) g (RUTY)] must be at least that of
any other random set whose distribution is in the range -
in particular, the random set RU) whose presence in the
range we prove at the previous level. If this random set
RU) is represented by the random variables X 7, Y}, then the
mechanism must return a distribution represented by X
such that

E[l — (1 - ¢(X;41))°] 2 E[1 — (1 - o(X;))(1 = ¢(Y;))]-

In fact we ignore the contribution of Y; and use the weaker
inequality

E[l — (1 - ¢(X;41))%] = E[3(X;)]. )

Hence, the existence of certain distributions in the range
forces the existence of other distributions, satisfying the
bound (4).

Gap amplification: Now we would like to say that if
two distributions represented by X; and X, satisfy (4),
then the distribution at level 5 + 1 is “more dense” than the
one at level j. Considering the scaling at different levels, we
want to prove that X;; is “significantly larger” than %X -
This is intuitive, since X1 = %X j 1s not enough to satisfy
(4), for example when ¢ is linear. Unfortunately, (4) does
not imply any useful relationship between the expectations
E[X,], E[X; 1], beyond E[X; 1] > 1E[X,]. For example,
we could have X; = 1 with probability ¢ — &2 and 0
otherwise. Then X;, = %{f satisfies (4) for any concave
function ¢ : [0, 1] — [0, 1]. This does not provide a constant-
factor improvement over 1 E[X;].

We still want to prove that X;, ; is in some sense
“significantly larger” than %X 4. Our main technical in-
equality formalizing this intuition is the following: Define
¢a(t) = min {L, 1}. Then for any distribution in the range
represented by X at level j and any «; € [0, 1], there is a
distribution in the range represented by X, at level j+1,
and cj11 € [0,1] such that

aj1E[¢a,,, (X)) 0 > a;E[gq, (X;)]' 0 (5)

where § > 0 is some (small) absolute constant. The use of
1+ ¢ in the exponent is crucial here. The proof of (5) is
quite technical; a rough sketch goes as follows.
By (4), there is a distribution at level j + 1 such that
E[1 — (1 - ¢(X;41))?] > E[¢(X;)]. We split into 2 cases:
1) If Pr[X;41 > a;V/¢] is at least some small con-
stant, then we set ;11 = %‘504]-. We use the
fact that if X1 > «;V0, then 2X;i1/a; is
a constant-factor larger than 1 — (1 — X;41/0)%,
and therefore E[pq;,,(X;11)] is a constant-factor
larger than ﬁE[anj (X;)]. From here, we prove

aj1E[Ba, (X)) 0 > B0 E g, (X)),

2
S 1+9
2

2) If X is mostly in the interval [0, o;v/3], then we set
Q1 = ozj\/g, i.e. much smaller than o;. We gain in
this case, because E[¢q, , (X} 11)] is much larger than
E[¢q, (X;)], by a factor of 1_23%6), and this factor is
amplified by the power of 1+ §. From this, we deduce
01 E[Gay, (Xj41)]H0 > 0B g, (X;)] 14,

The contradiction: Using (5), we arrive at a contra-
diction as follows. As we already mentioned, assuming that
an MIDR mechanism provides a c-approximation for the
CPP problem, then for any feasible set A(?) there must be
a distribution Dy in its range such that

|RNAO)|
Aoy | =

Now we apply the symmetry gap argument and the gap
amplification technique to random pairs of sets (A(j ), BU ))
at each level j. Starting from E[X(] > ¢ and ap = 1, by
repeated use of (5) we obtain that there is ay € [0,1] and a
distribution at level ¢ represented by X, such that

¢
alElon, (XD 2 (155) &
Note that ay(E[pa, (X)) <
E[min{ Xy, a}] < E[X/]. So in fact

1+6%\" 20t

E[Xd > ( 5 > C1+5 > 701+6.
The meaning of X, is simply the fraction of the ground set
that the mechanism returns at level . Since m = 20
we have 25°¢ > m(1+9)7 for some constant v > 0. If the
approximation factor is ¢ > m™7, then we get E[X,] > 277,
which would violate the cardinality constraint of the CPP
problem.

E[Xo] = Epp, [

aZE[¢az (XE)] =

5. HARDNESS FOR COMBINATORIAL AUCTIONS

The following is our main result for combinatorial auc-
tions.

Theorem 5.1. There are absolute constants €,y > O such
that there is no (1— ¢)-approximately truthful-in-expectation
mechanism for combinatorial auctions with monotone sub-
modular valuation functions in the value oracle model,
achieving a better than 1/n”-approximation in expectation
in terms of social welfare, where the number of players is
n and the number of items is m = poly(n).

Discussion: This theorem extends previous negative
results for combinatorial auctions with submodular valu-
ation functions, which were known only in the cases of
deterministic truthful and randomized universally truthful
mechanisms [9]. Also, it appears that as stated these results
do not rule out approximately truthful mechanisms.

We remark that there is still the possibility of a truthful-
in-expectation (TIE) mechanism in the “lottery-value” oracle



model which was introduced in [11]. Here, a player is
able to provide the exact expectation E[v;(X)] for a prod-
uct distribution given by x. Since the exact expectations
E[v;(X)] are hard to compute even in very special cases
like the budget-additive case, this is a severe limitation.
Our hardness result does not apply directly to this stronger
oracle model. However, what our result implies is that if a
truthful-in-expectation mechanism exists in the lottery-value
model, then it must be very sensitive to the accuracy of the
oracle’s answers, and does not remain even approximately
truthful-in-expectation if the oracle’s answers involve some
small noise. This is because if we had a mechanism in the
lottery-value oracle model, which remains approximately
TIE under small noise in the oracle and provides a good
approximation, then we could simulate this mechanism in
the value oracle model (by sample-average approximation).
Thus we would obtain an approximately TIE mechanism
contradicting Theorem 5.1.

Proof strategy: Our hardness result for combinatorial
public projects (Section 4) can be adapted to show that there
is no (approximately) MIDR mechanism for submodular
combinatorial auctions that guarantees a good approximation
ratio. However, unlike in CPP, we are unable to prove that
truthful-in-expectation mechanisms and MIDR algorithms
are equivalent in power (even in the approximate sense).
This is not surprising, since randomized truthful mecha-
nisms that are not maximal-in-distributional-range have been
designed for combinatorial auctions (see for example [5]).
Therefore, additional ideas are needed to rule out all truthful-
in-expectation mechanisms. Such ideas have been recently
put forth in a paper by Dobzinski [9]. The direct hardness
approach of [9] provides a way to avoid the characterization
step and instead attack the truthful mechanism directly. This
idea applies to truthful-in-expectation mechanisms as well.

The main idea of the direct hardness approach can be
stated as follows. If we identify a special player whose
range of possible allocations is sufficiently “rich” when the
valuations of other players are fixed to particular functions,
then we can work with the special player directly using the
taxation principle: There is a fixed price for each distribution
over allocations in the “range” of the mechanism as the spe-
cial player varies his valuation, and the mechanism outputs
the distribution in this range that maximizes the player’s
utility (his expected value for the distribution on allocations
less the price of that distribution). Thus, our symmetry gap
techniques from Section 4 apply here quite naturally, though
the presence of payments poses an additional technical
challenge that was not present for CPP. In the following,
we present a sketch of our proof.

The basic instance: We start from the following “basic
instance”. For an integer ¢, we construct instances with
IN| = n = 2° players and |[M| = m = poly(n) items.
Each player has a “polar valuation” v; (as in [9]), where
items in a certain set AEO) have value 1 for player ¢ and

other items have (small) value w > 0. The sets AZ(-O) are
chosen independently at random, under the constraint that
|A§O)| =m/n.

A counting argument shows that if a mechanism provides
a c-approximation in social welfare, then there must be a
player whose allocated set Rgo) overlaps significantly with
his desired set AZ(-O):

B[R N AL > (c/4 - )[R U AL

By an averaging argument, this is also true for a certain fixed
choice of the other players’ valuations. In the following, we
fix that choice and consider varying valuations for player
1 only, who we refer to as the “special player”. We also
drop the index 7, since we do not consider the other players
anymore.

In the following, we set w = ¢/8, so that E[|R() N
A > WE[|R® U A©®)|]. Hence we can estimate the
expected value received by the special player as follows:

E[v*(R®)] = E[[R® N AP] + wE[|R®\ A©)]

< 2E[|[R®) n 4O
Denoting X, = [Z20A0) have E[v*(R(©
g Ao = [a@ - We have [v*(RO)] <
ZME[Xo). Also, E[v*(R©)] > E[[RONAO ] = ZE[X,].
So the special player’s utility in the basic instance (in
expectation over the random instances) is E[X(], up to
a factor of 2.

Symmetry gap again: We consider valuations for the
special player at ¢ levels, in the same form that we con-
sidered in the case of combinatorial public projects. The
difference now is that the mechanism is not necessarily
maximal-in-distributional-range. Instead, we use the def-
inition of truthfulness in expectation directly. The same
symmetry gap argument as in Section 4 gives the following:

If there is a random set R\) possibly allocated at level j
_ |RWNAW)
: = T AD]
set RUH1) possibly allocated at level j + 1 at a price Pjy1,
[RUFTDAAGHD)|

W, so that

E[l — (1 - ¢(X;11))°] - E[Pj1] > E[p(X))]

Again, we are ignoring certain error terms and we are also
ignoring the issue of approximate truthfulness. Using the
fact that the valuation functions can be scaled arbitrarily
and the mechanism must still be truthful in expectation, we
obtain that for any A\, )\ > 0, there is distribution possibly
allocated at level 57 + 1 such that

NE[1-(1=¢(X;11))*] - N"E[Pj41] > NE[¢(X;)]-\"E[P;].
(6)
Convex hulls and the separation argument: Our goal
is to eliminate the prices from the picture, so that we
can use arguments similar to Section 4. For that purpose,
it is convenient to pass to convex hulls as follows. We

at a price P;, and X , then there is a random

and Xj+1 =

—E[P)).



define the distribution menu M at level j to consist of
all distributions of pairs of random variables (X, P;), such

that X; = % for some random set R(?) allocated for
a level-j valuation at a price ;. Then we define the closure
of a distribution menu, ﬂj, to be the topological closure
of the convex hull of M; (in the sense of taking convex
combinations of distributions). By convexity, (6) still holds
in the sense that for any (X, P;) with a distribution in M
and any X', A" > 0, there is (X;41, Pj4+1) with a distribution
in M1 such that (6) holds.

A convex separation argument, essentially Farkas’ lemma
in 2 dimensions, actually implies the following. For any
(X;, P;) with a distribution in M, there is (X;41, Pj11)
with a distribution in M, such that E[P; 1] < E[P;] and

E[l — (1 - ¢(X;+1))°] = E[6(X;)].

In other words, there is a distribution in the closure of the
menu at level j + 1 at a price no higher than the price we
had at level j, and the respective random variables X;, X1
satisfy the same relationship (4) that we had in Section 4.
The rest of the proof goes exactly as in Section 4, using
(5) and eventually producing a distribution represented by
(X¢, Py) in M, such that E[P;] < E[Py] and

o\ ¢
npx) > (155 e

Here, (X, P) represents the distribution and price allocated
in the basic instance. Now we consider the utility that the
distribution represented by (X, P;) would provide in the
basic instance: since every element has value at least w there,
the utility would be

E[v*(RY) — P > ElumX, — P/]

1+62\"
> wm () (E[Xo))'+° — E[Ry].
2
@)

Recall that the distribution of (X, P;) is not on the menu
M but rather in its convex hull. However, by using the
properties of the convex hull, there must be a distribution on
the actual menu M, that satisfies the same linear inequality.
So we can assume without loss of generality that the
distribution of (X, Pp) is on the actual menu at level ¢, and
RO is the respective random set that would be allocated to
the special player if he declared a level-¢ valuation.

Recall that in the basic instance, the value received by
the special player is at most 2T’”E[XO], and the respective
utility is at most 22E[X] — E[P,]. We also have n = 2°
and E[Xy] > ¢/4 —w = ¢/8. If ¢ = 8w > n~ 7 for a
suitable constant v > 0, we would obtain from (7) that
the special player could substantially improve his utility in
the basic instance by declaring a level-¢ valuation instead.
We conclude that this would contradict the property of
truthfulness in expectation.
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APPENDIX

In this appendix, we sketch the proof of Theorem 4.1. Let
Q= {SC[m]:|S| <k} be the set of outcomes of CPP.
Let A(Q) denote the simplex in R, representing the set
of distributions over 2. Let V denote the set of submodular
valuations on [m]. We think of V as a subset of R} —
specifically, each v € V is a vector in Rﬁ, where vg is the
value of outcome S for a player with valuation v. We note
that for each v € V, the infinity norm ||v|| is equal to
the value of the optimum solution. Fix €, ¢, M, and ¢§ as
in the statement of the theorem. Let A : V — A(Q) be
the allocation rule of M when there is a single player. By
assumption, A is a c-approximation for ¢ > 0 — specifically,
VAW S

H%\"? prove Theorem 4.1 by showing that there is a black-
box reduction that converts A to a new allocation rule B that
is (1 — 3¢ — ¢)-MIDR. The reduction will be non-uniform
— specifically, B will utilize an advice string that depends
on m, but is independent of the input valuation v € V. The
length of the advice string will not be bounded, polynomially
or otherwise — this is OK, since we are only interested
in preserving value oracle lower-bounds. B preserves the
approximation ratio of .4, and moreover makes only m more
value queries than does A.

The proof consists of two main steps. First, we show
that A tends to a (1 — ¢)-approximately maximal-in-
distributional-range allocation rule “in the limit” as we scale
up the valuations. Then, we use this fact to construct, via a
non-uniform black box reduction, an allocation rule B that
approximates the limit behavior of A, in the sense that it
(1 — 3¢ — 0)-approximately maximizes over the range of
A. We briefly sketch the ideas in each of these steps next,
deferring details to the full version of the paper.

Limit Behavior of the Mechanism: First, we make a
trivial observation: if M does not employ payments, then
our assumption that it is (1 — ¢)-approximately truthful-in-
expectation implies that its allocation rule A is (1 — €)-
MIDR. In the presence of payments, however, this no longer

follows. Our proof essentially shows that these payments
grow slowly as valuations are scaled up. Specifically, if the
mechanism M charges a player with valuation v € V a
price p(v), then if a scaling factor @ > 1 is applied to
the player’s valuation, the ratio of the payment p(av) to
the players value av? A(av) tends to zero as a tends to
0o. Therefore, payments become “insignificant” for large
valuations, and consequently A tends to a (1 — ¢)-MIDR
allocation rule as valuations are scaled up. Our proof of
this fact employs an analogue of weak monotonicity for
approximate truthfulness, and we omit the details.
Approximating the Limit Behavior: ldeally, we would

transform A to an allocation rule that behaves as A does
in the limit. By the preceding discussion, such a “limit
allocation rule” of A would be (1 — €)-MIDR. However,
since our reduction must take finite time, we must settle
for approximating the limit behavior of .A. Unfortunately,
even that is non-trivial: given v, the ratio o by which we
would need to scale v before coming close to the “limit” of
A(aw) is a complete mystery, and may be arbitrarily large.
Therefore, we need to utilize some non-uniform advice to
deduce that order of magnitude of the necessary scaling
factor. An additional difficulty is that this advice must be
independent of v — specifically, the advice may depend only
on the number of items m.

We show that, for each fixed number of items m and
d > 0, there is a 7 = 7(d) such that, for each u € V
with ||u|lec = 1, the output A(7u) is within 1 — 2¢ — 4
of the limit behavior of A — formally u? A(tu) >=
(1—2e —0) limy—y00 u” A(au). The number 7 will serve as
our advice string. We emphasize that 7 is a uniform bound
over all normalized “directions” u € V, and this uniformity
is what allows the advice string to be independent of the
valuation. The existence of such a uniform bound is a-priori
not obvious, and the proof of this fact relies crucially on the
approximate analogue of weak monotonicity, and employs
the construction of a finite net of V; we omit the details.

Given 7 = 7(0) as a non-uniform advice string, it follows
from the definition of 7 and the realization that A is (1 —¢)
MIDR in the limit that the following is an (1 — 3¢ — 0)
MIDR allocation rule : On input v, let s(v) be a non-zero
lower-bound on ||v||~, and output .A(TS&) ). Such a bound
s(v) is easily computed for submodular valuations using m
value queries, by setting s(v) = max; v({j}). Therefore,
this completes our proof.




